On Fields of Totally S-adic Numbers

نویسنده

  • LIOR BARY-SOROKER
چکیده

Given a finite set S of places of a number field, we prove that the field of totally S-adic algebraic numbers is not Hilbertian. The field of totally real algebraic numbers Qtr, the field of totally p-adic algebraic numbers Qtot,p, and, more generally, fields of totally S-adic algebraic numbers Qtot,S, where S is a finite set of places of Q, play an important role in number theory and Galois theory, see for example [5, 8, 9, 7]. The objective of this note is to show that none of these fields is Hilbertian (see [3, Chapter 12] for the definition of a Hilbertian field). Although it is immediate that Qtr is not Hilbertian, it is less clear whether the same holds for Qtot,p. For example, every finite group that occurs as a Galois group over Qtr is generated by involutions (in fact, the converse also holds, see [4]) although over a Hilbertian field all finite abelian groups (for example) occur. In contrast, over Qtot,p every finite group occurs, see [2]. In fact, although (except in the case of Qtr) it was not clear whether these fields are actually Hilbertian, certain weak forms of Hilbertianity were proven and used, both explicitly and implicitly, for example in [4, 6]. Also, any proper finite extension of any of these fields is actually Hilbertian, see [3, Theorem 13.9.1]. The non-Hilbertianity of Qtot,p was actually implicitly stated and proven in [1, Examples 5.2] but this result seems to have escaped the notice of the community and was forgotten. We give a short elementary proof (which is closely related to the proof in [1]) of the following more general result. Theorem 1. For any finite set S of real archimedean or ultrametric discrete absolute values on a field K, the maximal extension Ktot,S of K in which every element of S totally splits is not Hilbertian. Note that Ktot,S is the intersection of all Henselizations and real closures of K with respect to elements of S. We would like to stress that S does not necessarily consist of local primes in the sense of [7]. The authors are indebted to Pierre Dèbes for pointing out to them the result in [1]. They would also like to thank Sebastian Petersen for motivation to return to the subject of this note. This research was supported by the Lion Foundation Konstanz and the Alexander von Humboldt Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-adic Shearlets

The field $Q_{p}$ of $p$-adic numbers is defined as the completion of the field of the rational numbers $Q$ with respect to the  $p$-adic norm $|.|_{p}$. In this paper, we study the continuous and discrete $p-$adic shearlet systems on $L^{2}(Q_{p}^{2})$. We also suggest discrete $p-$adic shearlet frames. Several examples are provided.

متن کامل

$p$-adic Dual Shearlet Frames

We introduced the continuous and discrete $p$-adic shearlet systems. We restrict ourselves to a brief description of the $p$-adic theory and shearlets in real case. Using the group $G_p$ consist of all $p$-adic numbers that all of its elements have a square root, we defined the continuous $p$-adic shearlet system associated with $L^2left(Q_p^{2}right)$. The discrete $p$-adic shearlet frames for...

متن کامل

Computing p-adic L-functions of totally real number fields

We prove new explicit formulas for the p-adic L-functions of totally real number fields and show how these formulas can be used to compute values and representations of p-adic L-functions.

متن کامل

ON THE p-ADIC STARK CONJECTURE AT s = 1 AND APPLICATIONS

Let E/F be a finite Galois extension of totally real number fields and let p be a prime. The ‘p-adic Stark conjecture at s = 1’ relates the leading terms at s = 1 of p-adic Artin L-functions to those of the complex Artin L-functions attached to E/F . We prove this conjecture unconditionally when E/Q is abelian. Moreover, we also show that for certain non-abelian extensions E/F the p-adic Stark ...

متن کامل

INDUCTIVE CONSTRUCTION OF THE p-ADIC ZETA FUNCTIONS FOR NON-COMMUTATIVE p-EXTENSIONS OF TOTALLY REAL FIELDS WITH EXPONENT p

In this paper, we will construct the p-adic zeta function for a non-commutative p-extension F of a totally real number field F such that the finite part of its Galois group G is a p-group with exponent p. We first calculate the Whitehead groups of the Iwasawa algebra Λ(G) and its canonical Ore localization Λ(G)S by using Oliver-Taylor’s theory on integral logarithms. Then we reduce the main con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012